Ecloud modeling update

Ron Cohen

Presented to: Electron modeling group 1/21/04

* Work performed for the U.S. DOE under contracts W7405-ENG-48 at U.C. LLNL and DE-AC03-76F00098 at U.C. LBNL

Tested 3 options for moving electrons

- Full orbits, resolved cyclotron motion
 - dt = 0.25 * min cyclotron period
- Full mover but with dt = 10 times above, with leap-frog v and t (the Parker scheme)
 - My previously reported test was unfair: had warp's allspecl =1 option turned on, so v was synchronous with x. For large dt such a scheme will NOT get correct drifts for the cases Parker considered
- Interpolation scheme I suggested in APS poseter (reviewed on next slide)
- Results:
 - For very low-initial energy particles all three schemes do well;
 cyclotron orbits are very small.
 - For more energetic particles -- e.g. 400 ev partcles turning at 1 cm radius in hcx-like magnets, and modest beam space charge potential (corresp to 0.25 A beam) there are significant differences; the interpolation scheme does much better than Parker scheme

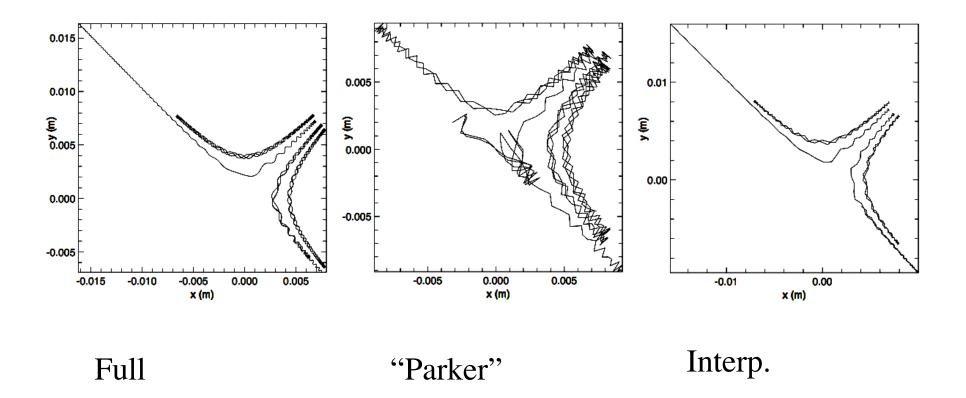
Interpolation scheme

- Update full instantaneous particle velocity v_L.
- Calculate drift (ExB + magnetic) velocity v_d
- Interpolate

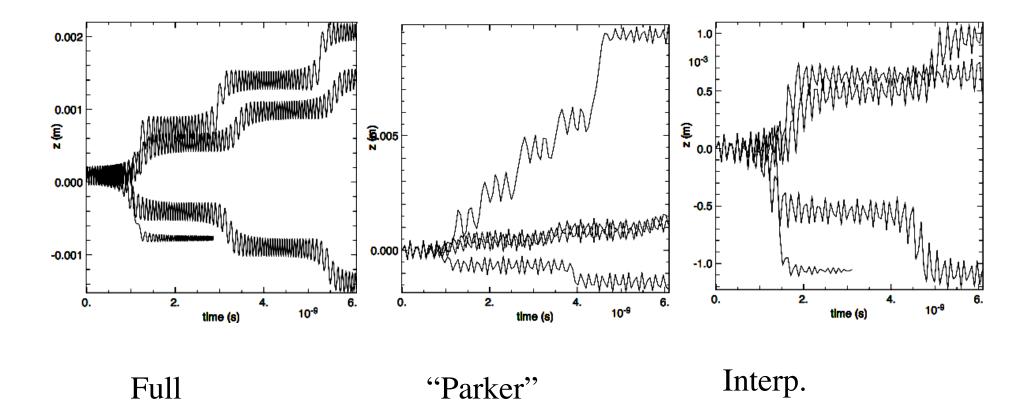
$$\mathbf{v}_{\text{eff}} = [\mathbf{v}_{\text{L}}] + (1 - []) \mathbf{v}_{\text{d}} + \mathbf{v}_{\parallel}$$

- Update x with v_{eff}
- Interpolation function □: my choice

$$\Box = 1/[1 + 0.25(\Box_{ci} dt)^2]^{1/2}$$


yields physical gyroradius at large as well as small dt

Correct drifts for the cases analyzed by Parker


x vs y

z vs t

